3.12.23 \(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3} \, dx\) [1123]

3.12.23.1 Optimal result
3.12.23.2 Mathematica [C] (warning: unable to verify)
3.12.23.3 Rubi [A] (verified)
3.12.23.4 Maple [B] (verified)
3.12.23.5 Fricas [C] (verification not implemented)
3.12.23.6 Sympy [F(-1)]
3.12.23.7 Maxima [F]
3.12.23.8 Giac [F]
3.12.23.9 Mupad [F(-1)]

3.12.23.1 Optimal result

Integrand size = 35, antiderivative size = 184 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3} \, dx=-\frac {(9 A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {(3 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {2 (3 A-2 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac {(9 A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \]

output
-1/10*(9*A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(si 
n(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/6*(3*A+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c 
os(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d-1/5*(A+C)*co 
s(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^3-2/15*(3*A-2*C)*sin(d*x+c)*c 
os(d*x+c)^(1/2)/a/d/(a+a*cos(d*x+c))^2+1/10*(9*A-C)*sin(d*x+c)*cos(d*x+c)^ 
(1/2)/d/(a^3+a^3*cos(d*x+c))
 
3.12.23.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.93 (sec) , antiderivative size = 1203, normalized size of antiderivative = 6.54 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3} \, dx =\text {Too large to display} \]

input
Integrate[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^ 
3),x]
 
output
(-4*A*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]*(A + C*Sec[c + d*x]^2)*S 
ec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 
 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[ 
Cot[c]]]])/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec 
[c + d*x])^3) - (4*C*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[{1/4, 
 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]*(A + C*Se 
c[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]] 
]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Si 
n[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot 
[c]^2]*(a + a*Sec[c + d*x])^3) + (Cos[c/2 + (d*x)/2]^6*(A + C*Sec[c + d*x] 
^2)*((8*(9*A - C)*Csc[c])/(5*d) + (8*Sec[c/2]*Sec[c/2 + (d*x)/2]*(9*A*Sin[ 
(d*x)/2] - C*Sin[(d*x)/2]))/(5*d) - (8*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(9*A* 
Sin[(d*x)/2] - C*Sin[(d*x)/2]))/(15*d) + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^5* 
(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(5*d) - (8*(9*A - C)*Sec[c/2 + (d*x)/2] 
^2*Tan[c/2])/(15*d) + (4*(A + C)*Sec[c/2 + (d*x)/2]^4*Tan[c/2])/(5*d)))/(S 
qrt[Cos[c + d*x]]*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^3) + 
 (18*A*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*Sec[c/2]*Sec[c + d*x]*(A + C*Sec[c + 
d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]] 
^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]...
 
3.12.23.3 Rubi [A] (verified)

Time = 1.21 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.08, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 4602, 3042, 3521, 27, 3042, 3456, 3042, 3457, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sec (c+d x)^2}{\sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^3}dx\)

\(\Big \downarrow \) 4602

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A \cos ^2(c+d x)+C\right )}{(a \cos (c+d x)+a)^3}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A \sin \left (c+d x+\frac {\pi }{2}\right )^2+C\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \frac {\int -\frac {\sqrt {\cos (c+d x)} (a (3 A-7 C)-a (9 A-C) \cos (c+d x))}{2 (\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\sqrt {\cos (c+d x)} (a (3 A-7 C)-a (9 A-C) \cos (c+d x))}{(\cos (c+d x) a+a)^2}dx}{10 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a (3 A-7 C)-a (9 A-C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3456

\(\displaystyle -\frac {\frac {\int \frac {2 a^2 (3 A-2 C)-a^2 (21 A+C) \cos (c+d x)}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}+\frac {4 a (3 A-2 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {2 a^2 (3 A-2 C)-a^2 (21 A+C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}+\frac {4 a (3 A-2 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle -\frac {\frac {\frac {\int -\frac {5 a^3 (3 A+C)-3 a^3 (9 A-C) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx}{a^2}-\frac {3 a^2 (9 A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {4 a (3 A-2 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {-\frac {\int \frac {5 a^3 (3 A+C)-3 a^3 (9 A-C) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {3 a^2 (9 A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {4 a (3 A-2 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {-\frac {\int \frac {5 a^3 (3 A+C)-3 a^3 (9 A-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {3 a^2 (9 A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {4 a (3 A-2 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3227

\(\displaystyle -\frac {\frac {-\frac {5 a^3 (3 A+C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 a^3 (9 A-C) \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {3 a^2 (9 A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {4 a (3 A-2 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {-\frac {5 a^3 (3 A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a^3 (9 A-C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {3 a^2 (9 A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {4 a (3 A-2 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {-\frac {5 a^3 (3 A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a^3 (9 A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {3 a^2 (9 A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {4 a (3 A-2 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {\frac {-\frac {3 a^2 (9 A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}-\frac {\frac {10 a^3 (3 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 a^3 (9 A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}}{3 a^2}+\frac {4 a (3 A-2 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

input
Int[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^3),x]
 
output
-1/5*((A + C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^3) 
- ((4*a*(3*A - 2*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Cos[c + d 
*x])^2) + (-1/2*((-6*a^3*(9*A - C)*EllipticE[(c + d*x)/2, 2])/d + (10*a^3* 
(3*A + C)*EllipticF[(c + d*x)/2, 2])/d)/a^2 - (3*a^2*(9*A - C)*Sqrt[Cos[c 
+ d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])))/(3*a^2))/(10*a^2)
 

3.12.23.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4602
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[d^( 
m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A*Cos 
[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] 
 && IntegerQ[m]
 
3.12.23.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(450\) vs. \(2(220)=440\).

Time = 3.28 (sec) , antiderivative size = 451, normalized size of antiderivative = 2.45

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (108 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+30 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+54 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+10 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-6 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-198 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+22 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+114 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-6 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-27 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-7 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} C +3 A +3 C \right )}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(451\)

input
int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3/cos(d*x+c)^(1/2),x,method=_RETUR 
NVERBOSE)
 
output
-1/60*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(108*A*cos(1 
/2*d*x+1/2*c)^8+30*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2 
+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+54*A* 
cos(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2 
+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-12*C*cos(1/2*d*x+1/2*c)^8+ 
10*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipt 
icF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5-6*C*cos(1/2*d*x+1/2*c 
)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipti 
cE(cos(1/2*d*x+1/2*c),2^(1/2))-198*A*cos(1/2*d*x+1/2*c)^6+22*C*cos(1/2*d*x 
+1/2*c)^6+114*A*cos(1/2*d*x+1/2*c)^4-6*C*cos(1/2*d*x+1/2*c)^4-27*A*cos(1/2 
*d*x+1/2*c)^2-7*cos(1/2*d*x+1/2*c)^2*C+3*A+3*C)/a^3/cos(1/2*d*x+1/2*c)^5/( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2* 
cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.12.23.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 467, normalized size of antiderivative = 2.54 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3} \, dx=\frac {2 \, {\left (3 \, {\left (9 \, A - C\right )} \cos \left (d x + c\right )^{2} + 4 \, {\left (9 \, A - C\right )} \cos \left (d x + c\right ) + 15 \, A + 5 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, {\left (\sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, {\left (\sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (9 i \, A - i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (9 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (9 i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (9 i \, A - i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-9 i \, A + i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-9 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-9 i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-9 i \, A + i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

input
integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3/cos(d*x+c)^(1/2),x, algori 
thm="fricas")
 
output
1/60*(2*(3*(9*A - C)*cos(d*x + c)^2 + 4*(9*A - C)*cos(d*x + c) + 15*A + 5* 
C)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*(sqrt(2)*(3*I*A + I*C)*cos(d*x + c) 
^3 + 3*sqrt(2)*(3*I*A + I*C)*cos(d*x + c)^2 + 3*sqrt(2)*(3*I*A + I*C)*cos( 
d*x + c) + sqrt(2)*(3*I*A + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) 
+ I*sin(d*x + c)) - 5*(sqrt(2)*(-3*I*A - I*C)*cos(d*x + c)^3 + 3*sqrt(2)*( 
-3*I*A - I*C)*cos(d*x + c)^2 + 3*sqrt(2)*(-3*I*A - I*C)*cos(d*x + c) + sqr 
t(2)*(-3*I*A - I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + 
 c)) - 3*(sqrt(2)*(9*I*A - I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(9*I*A - I*C)*c 
os(d*x + c)^2 + 3*sqrt(2)*(9*I*A - I*C)*cos(d*x + c) + sqrt(2)*(9*I*A - I* 
C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin 
(d*x + c))) - 3*(sqrt(2)*(-9*I*A + I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(-9*I*A 
 + I*C)*cos(d*x + c)^2 + 3*sqrt(2)*(-9*I*A + I*C)*cos(d*x + c) + sqrt(2)*( 
-9*I*A + I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) - I*sin(d*x + c))))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3 
*a^3*d*cos(d*x + c) + a^3*d)
 
3.12.23.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3} \, dx=\text {Timed out} \]

input
integrate((A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**3/cos(d*x+c)**(1/2),x)
 
output
Timed out
 
3.12.23.7 Maxima [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3/cos(d*x+c)^(1/2),x, algori 
thm="maxima")
 
output
integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)^3*sqrt(cos(d*x + c) 
)), x)
 
3.12.23.8 Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3/cos(d*x+c)^(1/2),x, algori 
thm="giac")
 
output
integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)^3*sqrt(cos(d*x + c) 
)), x)
 
3.12.23.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^3} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^3} \,d x \]

input
int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^3),x)
 
output
int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^3), x)